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1 Frequently Missed Problems

1.1 HW1. #3-(c)

Many students included the sentence like this: “to f−1 be defined, f should be
bijective.” You are absolutely right. However, as you can see at second quiz,
f−1 can be defined, even if f : X → Y is not bijective, as a function from the
collection of subsets of Y to the collection of subsets of X.

Figure 1: definition of X,Y and f

For example, let X = {1, 2, 3}, Y = {a, b, c} and B ⊆ Y such that B = {b}.
Let a function f : X → Y as f(1) = a, f(2) = b, f(3) = b. You see f is not
bijective, and f−1 : Y → X cannot be defined. Saying intuitively, if you put
an element of Y into f−1, then it returns more than one elements of X. That
makes f−1 : Y → X is not a function!

Figure 2: f−1 cannot be defined, as f−1(b) is not well defined, as a inverse
function.
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However, what if we put a subset of Y into f−1? By considering definition of
f−1(A), for any A ⊆ Y , f−1(A) = {x ∈ X|f(x) = y for some y ∈ Y }. f−1(A) is
a subset of X. That is, we can intepret f−1 as a function from the collection of
subsets of Y to the collection of subsets of X! You can check, if f−1 is bijective,
this ‘subset’ definition still holds(but trivial.)

Figure 3: f−1 of subsets are well defined: just no problem!

In particular, for subsets of Y containing exactly one element, for example
this case, {a}, {b}, {c}, the fiber of a, where a ∈ Y , is defined by f−1({a}). The
fiber of a is a subset in X. The fiber of some useful element is used somewhere
else, like algebra course, so it’ll be better if you remember.

Of course, one thing you should remember in this course is this: for f : X →
Y and any A ⊆ Y , f−1(A) is just a subset of X, and do not need the existence
of an inverse function f−1.

2 Comments

2.1 Very Easy ε− δ

ε−δ definition of limit is one challenging concept that freshmen and sophomores
in mathematics. While grading, I found that many students are having difficulty
understanding ε − δ. ε − δ comes with very crucial parts of analysis; limits,
continuity, convergence· · · . The sooner you understand it, the better.

Let us start with the limit of a sequence. Let {xn : n ∈ N} be a real sequence.
(xn) converges to L if ∀ε > 0,∃N ∈ N such that n ≥ N implies |xn − L| < ε.
In this case we have N , instead of δ, but it’s OK. You should understand the
difference, however underlying idea is same. I think propessor and teaching
assistants have taught you enough what the statement means. I’ll just briefly
check how you should use it when you prove something.

Suppose you are going to show xn → L as n → ∞. Then what you should
show is this: for every ε > 0, there exists N ∈ N such that |xn − L| < ε for
all n ≥ N . So whatever you do prove; that should holds for all positive ε. This
can be satisfied by starting proof with those statement: “Given any ε > 0,
...” or “Fix ε > 0. ...”, and then never ever attempt to overwrite ε until your
proof is done. The next thing you do is to show the existence of N(or, δ, when
you are dealing with continuous something). Whoa, showing existence sounds
difficult. However, if you can find N , then it exists! Therefore, in many case,
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you should find N . Some instructor use notation N(ε) to emphasize N should
be only dependent on ε, not depend on any other tricky indices you use, like
n, k, at cetera. In this viewpoint, N is a function of ε. How you find the function
N(ε)? That is the point of the proof. That means, N(ε) should be decided upon
the information of {xn}. Given the information of sequence {xn}, you should
construct concrete N(ε), then your proof is done and flawless. Let’s see some
example.

Example 1 Let {yn} and {zn} are two real sequences converge to L. Let’s
define {xn} with infinite coin toss:

xn =

{
yn if nth coin toss shows HEAD
zn if nth coin toss shows TAIL

In other way, put a random sequence of 0 and 1, for example, 0010110... then
change 0 to entries of yn sequencially, and 1 to zn. in case 0010110..., {xn}
becomes {y1, y2, z3, y4, z5, z6, y7, ...}. Show {xn} converges to L.

You should show that, for every ε > 0, there exists a natual number N such
that |xn−L| < ε for all n ≥ N . You have the information of {xn}; {xn} consists
of two partitioning subsequences {yn} and {zn}, and they are convergent to L.
You should start here. Fix ε! Then what you can say about {xn} with ε? Well,
We know {yn} and {zn} are both convergent, so there exist a Ny and Nz such
that |yn − L| < ε for n ≥ Ny and |zn − L| < ε for n ≥ Nz, respectively. Then,
how can we define N so that we can sure “n ≥ N implies |xn − L| < ε”? Since
xn = yn or xn = zn for any n,

|xn − L| = |yn − L| < ε holds if n ≥ Ny and xn = yn, (1)

|xn − L| = |zn − L| < ε holds if n ≥ Nz and xn = zn. (2)

Those statements are almost complete, but the additional conditions “xn = yn”
and “xn = zn” is a nuisance. How can we get rid of them? Fortunatelly, we
have either xn = yn or xn = zn, two cases covers entire case. Then we should
manipulate Ny and Nz part. You should understand

“|xn − L| = |yn − L| < ε holds if n ≥ Ny and xn = y′′n implies

“|xn − L| = |yn − L| < ε holds if n ≥ N∗ and xn = y′′n for any N∗ ≥ Ny.

since this is just deleting some information you have. This holds for zn part too.
We want to unify two statements, (1) and (2), we are to find some number that
is greater or equals to both Ny and Nz. There indeed is; max(Ny, Nz). Then
from (1) and (2), we get

|xn − L| < ε holds if n ≥ max(Ny, Nz) and xn = yn, (3)

|xn − L| < ε holds if n ≥ max(Ny, Nz) and xn = zn. (4)

Then from (3) and (4),

|xn − L| < ε holds if n ≥ max(Ny, Nz) and either xn = yn or xn = zn. (5)
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We always have xn = yn or xn = zn, finally we have

|xn − L| < ε holds if n ≥ max(Ny, Nz). (6)

Then max(Ny, Nz) is what we are looking for: N . Let N = max(Ny, Nz), and
verify this indeed holds. Ah, one more thing: Ny and Nz are functions of ε,
therefore N is a function of ε too.

You can find this kind of examples everywhere, so please read them carefully
to have a thorough understanding of ε− δ.

2.2 Inequality

Almost every time, you are asked to prove an equality. Equality is nice. Clear,
Elegant, and easy to understand. However, when you are trying to prove an
equality, you may find it is difficult to write a ‘magic sentences of equalities’.
You may have faced some equalities that is not easy to prove.

There is a popular notion about this situation: inequality for analysis, equal-
ity for algebra. Although both of analysis and algebra use both of inequality and
equality, at least it is true that understanding how inequalities are used will get
you a higher analysis grade. :)

Logic is simple. Let a, b are real numbers. If you have a ≥ b and a ≤ b,
then what you will get? It’s simple: a = b ! Therefore, if you are asked to show
a = b, then it is suffice to show a ≥ b and a ≤ b. That’s simple. (Compare this
statement with problem 6 of HW1.)

What really fascinating is, this kind of approach holds for other general
inequalities also! Let A,B are two sets. We can show A = B by showing A ⊆ B
(Technically, you can show this by every elements of A is also in B.) and A ⊇ B
hold. Sometimes, usually in number theory, you may show two natural numbers
coincide (x = y) by showing they are dividing each other. (x | y, y | x) If you
are interested what are other inequalities, just google ‘partial order’.

One very crucial using of this “two inequalities→ an equality” trick is prov-
ing equivalence: that is, showing A ⇔ B, when A and B are some statements.
Showing two statements are equivalent, is equivalent to show each statement
implies each other: A⇒ B and A⇐ B. You may check problem 5 of HW1.

Example 2 I mentioned that
To show A⇔ B is equivalent to show A⇒ B and A⇐ B.
How you are going to prove this statement? :) I’m not asking you to be detail.

What’s your idea?

Cheer up and work hard!
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